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Abstract. Characterizing the variability across timescales is important to understand the underlying dynamics of the Earth

system. It remains challenging to do so from paleoclimate archives since they are more than often irregular and traditional

methods to produce timescale-dependent estimates of variability such as the classical periodogram and the multitaper spectrum

generally require regular time sampling. We have compared those traditional methods using interpolation with interpolation-

free methods, namely the Lomb-Scargle periodogram and the first-order Haar structure function. The ability of those methods to5

produce timescale-dependent estimates of variability when applied to irregular data was evaluated in a comparative framework

using surrogate paleo-proxy data generated with realistic sampling. The metric we chose to compare them is the scaling

exponent, i.e. the linear slope in log-transformed coordinates, since it summarizes the behaviour of the variability across

timescales. We found that for scaling estimates in irregular timeseries, the interpolation-free methods are to be preferred

over the methods requiring interpolation as they allow for the utilization of the information from shorter timescale which are10

particularly affected by the irregularity. In addition, our results suggest that the Haar structure function is the safer choice

of interpolation-free method since the Lomb-Scargle periodogram is unreliable when the underlying process generating the

timeseries is not stationary. Given that we cannot know a priori what kind of scaling behaviour is contained in a paleoclimate

timeseries, and that it is also possible that this changes as a function of timescale, it is a desirable characteristic for the method

to handle both stationary and non-stationary cases alike.15

1 Introduction

Paleoclimate archives are crucial to improve our understanding of climate variability on decadal to multi-centennial timescales

and beyond (Braconnot et al., 2012). They provide independent data for the evaluation of the climate models which are used

to project future climate change. To this end, quantitative estimates of variability based on palaeoclimate records allow to

compare past changes in variance over a wide range of timescales (e.g. Laepple and Huybers, 2014b, a; Rehfeld et al., 2018;20

Zhu et al., 2019) and how variance is distributed across different timescales (e.g. Mitchell et al., 1976; Huybers and Curry,

2006; Lovejoy, 2015; Nilsen et al., 2016; Shao and Ditlevsen, 2016).
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We generally refer to scaling as the statistical characterization of the changes in climate variability as a function of timescale

τ , or equivalently as a function of frequency f such that f = τ−1. The term scaling often implies, although not necessarily,

power-law scaling: a stochastic process is said to be power-law scaling over a range of timescales [τ1, τ2] if a time-scale25

dependent statistical metric S(τ) approximately follows a power-law relationship such that S(τ)∝ τa, where a is a general

power-law scaling exponent. Therefore, processes that fulfill this property show a log-linear relationship in the power spectrum

(Schuster, 1898; Percival and Walden, 1993) over a given range of timescales. The corresponding power-law scaling exponent

can be informative of the underlying dynamics of the system, such as the degree of temporal auto-correlation, i.e. the system’s

memory (Mandelbrot and Wallis, 1968; Lovejoy et al., 2015; Graves et al., 2017; Fredriksen and Rypdal, 2015; Del Rio Amador30

and Lovejoy, 2019). While assuming power-law scaling may be a simplification, it is a rather accurate first-order description

for a vast range of geophysical processes (Cannon and Mandelbrot, 1984; Pelletier and Turcotte, 1999; Malamud and Turcotte,

1999; Fedi, 2016; Corral and Gonz\‘alez, 2019).

Methods used for scaling analysis generally assume that the process under investigation has been sampled at regular time

steps. This is appropriate for some instrumental observations and annually-resolved paleoclimate archives such as tree- and35

coral- rings. However, since most paleoclimate archives are the product of slow and intermittent accumulation in sediments

or ice sheets, sampling them at regular depth intervals translates to irregular time intervals (Bradley, 2015). In addition, the

irregular accumulation process usually has to be reconstructed and necessarily introduces age-uncertainty (Rehfeld and Kurths,

2014), although it does not affect the scaling estimates strongly (Rhines and Huybers, 2011).

Therefore, the primary challenge is that scaling analysis methods need to be adapted for the analysis of sparse and irregular40

series. Two approaches to this problem can be distinguished.

Firstly, an interpolation routine can be employed prior to the analysis in order to regularize the series. Once the series are

regular, traditional methods such as the classical periodogram (CPG) or the multitaper spectrum method (MTM; Thomson,

1982) can be used (See this approach used in a paleoclimatology context in Huybers and Curry, 2006; Laepple and Huybers,

2014a, b; Rehfeld et al., 2018).45

Secondly, the estimator can be adjusted for arbitrary sampling times. The so-called Lomb-Scargle Periodogram (LSP; Lomb,

1976; Scargle, 1982) was developed in the field of astronomy to identify periodic components in noisy astronomical timeseries

with sampling hiatus and has sometimes been used in paleoclimatological context (Schulz and Stattegger, 1997; Trauth, 2020),

although the LSP may introduce additional bias and variance (Schulz and Stattegger, 1997; Schulz and Mudelsee, 2002;

Rehfeld et al., 2011). More recently, Lovejoy and Schertzer (2012) advocated for the use of the Haar Structure Function (HSF),50

based on Haar wavelets (Haar, 1910), in geophysics due to its ease of interpretation and accuracy. Incidentally, the HSP can

easily be adapted for irregular timeseries.

Another method which is often used for scaling analysis is the detrended fluctuations analysis (Peng et al., 1995; Kantelhardt

et al., 2002, DFA) which has also been applied to climatic and paleoclimatic timeseries (Koscielny-Bunde et al., 1996; Rybski

et al., 2006; Shao and Ditlevsen, 2016). However, a pre-study showed it was less efficient for irregular timeseries and we55

decided to omit it for clarity. In addition, it underestimates variance at any given timescale because of the necessary detrending

(Nilsen et al., 2016) and it is therefore of limited use beyond the estimation of scaling exponents.
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In the present work, we compare the different methods for the scaling of variability and make them accessible in a single

software package. Our main aim is to assess their ability to estimate variability across timescales in a paleoclimatological

context which often entails scarce and irregular timeseries. In order to benchmark the methods, we evaluate them on surrogate60

data with known properties similar to those of palaeoclimate records without abrupt transitions. Finally, we apply the methods

to a database comprising LGM and Holocene records to evaluate their performances on real data.

2 Data and Methods

In this section, we outline the different methods considered to evaluate scaling, and how they can be compared. We also

provide a method to generate “paleo-proxy” surrogate data with realistic variability and sampling, which is then used to test65

and compare the scaling methods.

2.1 Scaling estimation methods

Scaling generally refers to the behaviour of a quantity S(τ) as a function of scale τ (or frequency f such that f = τ−1) for a

given process X(t). In the current work, we exclusively consider timeseries, but the same methods can be used to investigate

spatial scaling relationships. The quantity S(τ) considered can be the statistical moments of an appropriately defined fluctuation70

∆X such as the power spectral density or Haar fluctuations. It is usual to assume such form to define a structure function for

the statistical moments (Schertzer and Lovejoy, 1987; Lovejoy and Schertzer, 2012) of the process under investigation:

S∆X,q(X,τ) =<∆Xq
j,τ >∝ τ ξ(q) (1)

where “< ... >” denotes ensemble averaging over all fluctuations j available at the given scale τ , q is the statistical moment

(i.e. q = 1 corresponds to the mean, q = 2 to the variance, q = 3 to the skewness and so on), and ξ(q) = qH −K(q) is the75

exponent function where H is the fluctuation scaling exponent and K(q) is the moment scaling function. K(q) is zero for

Gaussian processes and thus, for this specific case, all statistical moments scale similarly, i.e. ξ(q)∝ qH .

The equivalent metric for the power spectrum method is the spectral scaling exponent β (see below section 2.1.1 for a formal

definition). The two scaling exponents can be related by the following:

β = 1 + 2H −K(2) (2)80

where K(q) at q = 2 is used since the spectrum is a second-order statistic. This relation can be understood intuitively since β

describes the scaling of the power spectral density obtained via the Fourier transform of the auto-covariance function whereas

H describes the scaling of the real space fluctuations. Therefore, since the auto-covariance is proportional to the expectation

value of the (zero-mean) timeseries squared, the exponent H is multiplied by two, while the integration in the definition of the

Fourier transform increases the scaling exponent by +1.85

In this work, we will focus on the quasi-Gaussian case in order to minimize the number of estimated parameters; paleoclimate

archives often lack the resolution and/or length to estimate many parameters with confidence. This assumption is rather well
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justified for temperature and precipitation timeseries at timescales longer than the turbulent weather regime (i.e. timescales

longer than weeks or a few years depending on the location and medium (Lovejoy and Schertzer, 2012)). On the other hand,

highly intermittent archives which clearly display multifractality, such as volcanic series (Lovejoy and Varotsos, 2016) or dust90

flux (Lovejoy and Lambert, 2019), would require the “intermittency correction” from the moment scaling function K(q).

Under the quasi-Gaussian assumption, we can simplify equation 2 since this implies K(2)≈ 0 and therefore:

β ≈ 1 + 2H (3)

This allows to convert estimated β̂ (where "ˆ" denotes an estimator for the given quantity) into their equivalent estimated

fluctuation scaling exponents Ĥ . We use the fluctuation scaling exponent H for inter-comparison between the methods in95

this study. H is a natural choice as it describes directly the behaviour of fluctuations in real space and is the usual parameter

in functions to generate fractional noises (Mandelbrot and Van Ness, 1968; Mandelbrot, 1971; Molz et al., 1997). While the

fluctuation exponent H takes its origin in the so-called Hurst exponent (Hurst, 1956), its meaning and definition has evolved

and changed over time, see Graves et al. (2017) and Lovejoy et al. (2021) for historical summaries.

The process to estimate the scaling exponents can be divided into three steps. First, if the series is irregularly spaced, it100

requires to be regularized in order to be usable for the CPG and the MTM. The regularization is not necessary for the HSF

and the LSP which have the advantage that they can be calculated directly on the irregular timeseries. Second, the fluctuations

proper to each method are calculated as a function of timescale, and finally, the scaling exponent is fitted on the result.

2.1.1 Power Spectrum

For an ergodic, weakly stationary stochastic process X , the power spectrum P is given by the Fourier transform of the auto-105

covariance function γ, and equivalently the squared Fourier transform of the signal (Storch and Zwiers, 1984),

P (τ) = |F{X}|2 = F(γ{X}) . (4)

where τ is the timescale and F denotes the Fourier transform operator. Equivalently, the power spectrum can be given as a

function of the frequency f = τ−1 instead of the timescale τ . We choose to write it as a function of timescale to allow for

visual comparison with the Haar method below, and also because it is more intuitive: a non-expert can easily grasp what the110

1000-year timescale means rather than the equivalent 0.001-year-1 frequency.

Classical Periodogram

The power spectrum for a discrete process X with N timesteps at regular intervals can be estimated using the classical peri-

odogram (Chatfield, 2013):

P̂C(τ) =
1
πN

∣∣∣∣∣
N∑

t=1

Xte
−2πit
τ

∣∣∣∣∣

2

(5)115

If log(P (τ)) behaves linearly over a range of timescales τ , the timeseries is considered to be power-law scaling over this

timescale band, i.e. P (τ)≈Aτβ for an arbitrary constant A.
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Multitaper Spectrum

The MTM method improves upon the CPG by producing independent estimates using a set of orthogonal functions: the prolate

spheroidal wave functions ht,k (Slepian and Pollak, 1961), also known as the Slepian tapers, which have the desirable property120

of minimizing spectral leakage (Thomson, 1982). The spectral individual estimates for the kth taper can be written in a form

similar to the periodogram above:

P̂k(τ) =
1
πN

∣∣∣∣∣
N∑

t=1

hk,tXte
−2πit
τ

∣∣∣∣∣

2

(6)

The estimator can then be expressed as the mean of the K tapered estimates:

P̂MT (τ) =
1
K

K−1∑

k=0

P̂k(τ) (7)125

Interpolation

To produce the power spectrum with the methods above, it is necessary to interpolate the series at a regular resolution. Follow-

ing Laepple and Huybers (2013), the data were first linearly interpolated to 10 times the mean resolution, then low-pass filtered

using a finite response filter with a cut-off frequency of 1.2 divided by the target mean resolution in order to avoid aliasing.

Linear interpolation corresponds to a convolution in the temporal domain with a triangular window. The Fourier transform of130

the triangular window is sinc2, where the sinc function is defined as sinc= x−1sin(x), and therefore, a linear interpolation

multiplies the power spectrum by sinc4 modulated by the resolution of the interpolation (Smith, 2011), resulting in a power

loss near the Nyquist frequency.

Lomb-Scargle Periodogram

As an alternative to the classical periodogram which requires regular data, Scargle (1982) introduced the LSP as a generalized135

form of the CPG (equation 5):

P̂LS(τ) =
A2

2



N∑

j

X(tj)cos
2π(tj −T )

τ




2

+ (8)

B2

2



N∑

j

X(tj)sin
2π(tj −T )

τ




2

(9)

where A, B and T are arbitrary functions of timescale τ and sampling times tj which can be irregular. We see that if A=

B =
√

2
N and T = 0, we would recover the classical periodogram in case of regular sampling, but the reduction is not unique140

and other choices of A and B can be made. The periodogram estimates are chi-squared distributed with 2 degrees of freedom
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(i.e. an exponential distribution) and therefore, A and B will be chosen to retain this property. For independent and identically

distributed white noise, it is the case when:

A(τ, tj) =

√√√√
N∑

j

cos2
2πtj
τ

(10)

145

B(τ, tj) =

√√√√
N∑

j

sin2 2πνtj
τ

(11)

The CPG is invariant to time translation since shifting the timesteps by a constant value only affects the phase of the complex

exponential inside the absolute value. The function T is thus introduced for the generalized periodogram to retain that property,

which is the case when:

T (τ, tj) =
τ

4π
tan−1

(∑N
j sin4πτ−1tj

∑N
j cos4πτ−1tj

)
(12)150

The LSP has been mostly used in astronomy to detect periodic components in noisy irregular data. As outlined above, the

functions A and B are chosen following the assumption that the process X is approximately white noise with no temporal

correlation. This assumption is of course problematic from the perspective of climate timeseries which usually exhibit long-

range temporal correlation, but, as we will see later, good estimates of scaling exponents can nonetheless be recovered over a

wide range of H .155

2.1.2 Haar Structure Function

The HSF allows to perform the scaling analysis in real space, i.e. without performing a Fourier transform. When used to define

a structure function, Haar wavelets are appropriate to estimate the fluctuation exponent of processes withH ∈ (−1,1) (Lovejoy

and Schertzer, 2012), a range covering most geophysical processes, and therefore, also because of its readiness to be applied

to irregular series and its ease of interpretation, Lovejoy and Schertzer (2012) argued it makes it a convenient choice for the160

scaling analysis of geophysical timeseries.

Haar fluctuations H are simple to implement for irregular sampling. They can be defined for a given interval of length τ as

the difference between the mean of the first half of the interval with the second half:

Hτ,j(X(ti)) =
2
τ

∣∣∣∣∣
∑

tj+
τ
2<ti<tj+τ

X(ti)−
∑

tj<ti<tj+
τ
2

X(ti)

∣∣∣∣∣ (13)

The discrete sampling ti does not have to be regular since the average of the available fluctuations in the intervals is taken. This165

is of course an approximation since the fluctuations available might not exactly correspond to the expected timescale.

The first-order HSF SH,q=1 can now be defined by using the Haar fluctuation defined above in equation 1 and letting q = 1:

SH,q=1(X(t), τ) =<Hτ,j(X(t))>≈AτH (14)
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Higher-order structure functions can be defined by considering other values of q and analyze multifractal processes, but since

we are only dealing with the quasi-Gaussian case in this manuscript, q = 1 is sufficient. For simplicity, we refer to the first-order170

HSF simply as HSF.

Since we are taking the average value of the absolute of the fluctuations, if the fluctuations are distributed in a quasi-Gaussian

fashion, then we expect the distribution of Haar fluctuations at each scale to be a half-normal distribution, i.e. a zero-mean

Gaussian distribution folded along zero. The mean µHG of such half-Gaussian distribution, which can be obtained by taking

the absolute of a Gaussian distribution, is proportional to the standard deviation σG of the original Gaussian distribution,175

i.e. µHG =
√

2
πσG. Since the sign of the Haar fluctuation before taking the absolute is arbitrary, we can also consider the

negative of those fluctuations to create an ensemble which is even closer to a Gaussian distribution and has mean equal zero

by construction. We then estimate the mean absolute Haar fluctuation using the definition with the standard deviation given

above. This procedure marginally improves the estimation procedure over directly taking the average of the absolute of the

Haar fluctuations available.180

2.1.3 Slope Estimation

For a power-law relationship between variables x and y such as y =AxB , it is usual to use standard least-square fitting to find

the coefficient A and the exponent B as the linear coefficients of the equivalent linear relationship after taking the logarithm

of the equation such that: logy =B logx+ logA. Least-square fitting assumes the residuals are normally distributed which is

often a good approximation for the logarithm of the power spectral density of a stochastic process at a given frequency.185

In the case of stationary Gaussian processes, it can be shown that the CPG and LSP estimates at a given timescale are dis-

tributed like a chi-square distribution with degrees of freedom equal to two (i.e. an exponential distribution), and for the MTM

it is approximately twice the number of tapers, albeit slightly less depending on their degree of dependence. The logarithm of

the distributions mentioned above is similar enough to a normal distribution to obtain reasonable estimates with an ordinary

least-square fit. Another option is to use a generalized linear model with a gamma distribution model which the chi-square is a190

special case of. While very similar results are obtained for both fitting methods, we chose the generalized linear model method

since it is theoretically more justified.

For a Gaussian process, the first-order Haar fluctuations will follow a normal distribution, but as we are fitting the abso-

lute value of the fluctuations, the estimates at a given timescale will follow a half-normal distribution as mentionned above.

Although the half-normal distribution is not a specific case of the gamma distribution, but rather the generalized gamma distri-195

bution, we also use the generalized linear model to estimate its scaling exponent for practical purposes.

Timescale Band for Slope Estimation

For all methods, we need to select a range of timescales over which to estimate the scaling exponent using the generalized linear

model. The maximum fitting timescale τmax used was always one third of the largest scale available in order to maximize the

range of timescales used while avoiding the longer timescales which have poor statistics in the case of the HSF (Lovejoy and200

Schertzer, 2012), and underestimate variance in the case of the MTM because of its known bias (Prieto et al., 2007) and the
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usual linear detrending. Since the impact of irregularity is not important at long timescales, we chose this same τmax for all

methods for consistency. The optimal minimum timescale τmin on the other hand can vary depending on the method used and

requires a careful treatment.

For the CPG and the MTM, we fitted above the timescale corresponding to the Nyquist frequency, i.e twice the resolution,205

for regular series. In the case of irregular data, since the interpolation brings about a power loss at small timescales (Schulz

and Stattegger, 1997; Rhines and Huybers, 2011; Kunz et al., 2020), fitting over the small timescales produces a positive bias

on the slope estimation. Therefore, when estimating the scaling exponents for the irregular series, we consistently fitted above

three times the mean resolution τµ as a compromise (i.e. 1.5 times the Nyquist frequency). This choice of τmin was informed

(as for the methods below) from the results using the paleoclimate database (see section 3.3).210

For both the HSF ans LSP, we used twice the resolution as τmin for the regular cases and we used τmin = 2τµ for the

irregular cases.

2.2 Evaluation of the estimators

2.2.1 Surrogate data

To test the methods, we produce surrogate data with the same characteristic as the paleoclimate archives, namely a given215

scaling behaviour and an irregular sampling in time.

Simulation of power-law noise

A classical example of a non-stationary process (H > 0) is normal Brownian motion (H = 1
2 ) which is produced by (integer

order) integration of a normal Gaussian white noise (H =− 1
2 ). A process with a given scaling behaviour can be obtained

by fractional, rather than integer, order integration (or differentiation) of a given set of innovations, i.e. a random series of220

uncorrelated values obtained from a certain distribution. To generate our surrogate data, we consider the simplest case when

the innovations are drawn from a normal Gaussian distribution. This leads to the classical fractional Gaussian noise (fGn) and

fractional Brownian motion (fBm) (Mandelbrot and Van Ness, 1968; Mandelbrot, 1971; Molz et al., 1997). For any fGn process

there is a related fBm process which can be obtained by (integer-order) integration, which increases the scaling exponent of

the process by +1. It is usual to define the associated fGn and fBm processes by the same scaling exponent h ∈ (0,1) which225

directly describes the scaling behaviour of the HSF for the fBm, or for the fGn after (integer order) integration. However, it is

inconvenient to use the same parameter for both fGn and fBm when considering them in a common framework and we prefer

to also identify the fGn by the scaling behaviour of its HSF, rather than that of its integral, such that it has H ∈ (−1,0). In the

current paper, we generally refer to both fGn and fBm as “fractional noise” described by an exponent H ∈ (−1,1). They are

generated using an algorithm developed by Franzke et al. (2012).230

Series withH ∈ (−0.5,−0.3) are typical of monthly land air-surface temperature up to decadal timescales, while series with

H ∈ (−0.3,0) are more typical of sea-surface temperature over similar timescales. Non-stationary behaviour with H > 0 is

typically observed in pre-Holocene series comprising Dansgaard-Oeschger events (Nilsen et al., 2016).
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Generation of irregular paleoseries

To produce irregularly sampled series akin to paleoclimate archives, an “annual resolution” series with a given scaling exponent235

is first produced with the above method, and then degraded at the desired resolution using two different methods. The first one

is to simply block average, and the second one is to sub-sample a low-pass filtered version of the series.

For the block averaging method, boundaries are determined as the midpoint between subsequent timesteps, and all data in

between is averaged. This corresponds, in the temporal domain, to a convolution with a square window, or equivalently in

the frequency domain, multiplying the Fourier transform by the sinc function (sinc(x) = x−1sin(x)). Therefore, the power240

spectrum is multiplied by a sinc2 and this brings about a loss of power at the high frequencies. For the second method, the

timescale of the low-pass filter is taken as twice the mean resolution of the series, and the filtered series is simply sub-sampled

at the desired timesteps. In the frequency domain, the filtering corresponds to multiplying the spectrum by a square function

which cuts off variability below the specified timescale, and therefore, this is useful to reduce the aliasing of higher-frequencies.

The first method would correspond to an archive sampled without gaps and where there is no smoothing of the signal, for245

example speleothem and varved sediments if samples containing several layers are taken, or marine records when the sample

distance is smaller than the typical mixing depth in the sediment (Berger and Heath, 1968). The second method would corre-

spond to archives with spaced out sampling (for example 1 cm every 10 cm) and including processes such as bio-turbation and

diffusion which smooth out the high-frequency signal, for example biochemical and ecological data extracted from sediment

cores (Dolman and Laepple, 2018; Dolman et al., 2020). We show the second method as our main result since it is more250

common to have archives with such smoothing processes, but also because it removes most aliasing effect from our results. It

therefore leaves a clearer picture of the other effects inherent to each methods. It is however an idealization since the smoothing

timescale of the physical processes involved is not related to the resolution; it should be independently estimated and accounted

for in applied studies, although it is seldom reported. All the results were also computed for the block average method and are

shown in the supplementary information (Fig. S1, Fig. S2, Fig. S3, Fig. S4, Fig. S5, Fig. S6).255

Previous studies have shown that the distribution of sampling times for typical sedimentary records can be approximated

by a gamma distribution (Reschke et al., 2019a). To test systematically the impact of increasingly irregular sampling, we

thus draw the time steps from a gamma distribution defined by its shape parameter k (or skewness ν such that k = ν−1) and

mean parameter µ which corresponds to the mean time-step τµ. When the skewness parameter is ν = 0, then we have regular

sampling of width µ. Figure 1 shows an example of such surrogate series at annual resolution and an irregularly degraded260

version (with timesteps drawn from a gamma distribution with ν = 1), along with the results of applying the three scaling

estimation methods considered for the main analysis: the MTM, the HSF and the LSP. We omit a discussion of the results

computed using the CPG as they are generally very similar to those of the MTM, albeit with higher variance.

2.2.2 Performance metrics and performance plots

Our aim is to evaluate how the different methods perform in the estimation of scaling exponents for irregularly sampled265

paleoclimate data X(t) with different scaling behaviour, and of variable length and irregularity. In order to assess the accuracy
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Figure 1. (a,e,i,m,q,u) Surrogate timeseries generated with a given H are shown at annual resolution (brown), degraded to a regular 50-year

resolution (blue) and degraded to an irregular and random spacing drawn out of a gamma distribution with skewness ν = 1 and mean 50

years. (b,f,j,n,r,v) Shown are the mean power spectra, estimated using the MTM, of 100 realizations of surrogate timeseries generated as

in (a,e,i,m,q,u), respectively, and shown with the same colour scheme. The irregular case is also shown after dividing the power spectra by

the expected sinc4 bias due to interpolation (dashed pink). Also shown are the bounds for the fitting range considered later (vertical dashed

blue): at the Nyquist frequency corresponding to 100 years, at 1.5 times the Nyquist frequency corresponding to 150 years and at one third

the length of the timeseries at 2000 years. c,g,k,o,s,w Same as (b,f,j,n,r,v), respectively, but for the LSP instead of the MTM. d. Same as

(b,f,j,n,r,v), respectively, but showing HSF instead of MTM power spectra.
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and precision of our scaling exponent estimator Ĥ for a given set of parameters, we generate an ensemble of surrogate data

X̂(t) and analyze its statistics. We evaluate three measures: the bias B for the accuracy of the estimator Ĥ with respect to the

input H , the standard deviation σ for the precision of the estimator, and the root-mean-square error RMSE which combines

both previous measures:270

B =< Ĥ >−H (15)

σ =
√
< Ĥ2 >−< Ĥ >2 (16)

RMSE2 =B2 +σ2 (17)275

We exploited the geometric relation between the three to easily visualize the results. We summarize the results for a set of

parameters by one point on a bias-standard deviation diagram (Fig. 3) where the x-axis gives the bias, the y-axis the standard

deviation and the distance from the origin then corresponds to the root-mean-square error. The bias and standard deviation at

for each combination is calculated from a large ensemble of surrogate data (10 000 realizations).

2.3 Data280

In order to test the methods with the sampling properties of typical paleo-proxy data, we consider an available database of

marine and terrestrial proxy records for temperature (Rehfeld et al., 2018), which was also used for signal-to-noise ratio

assessments by Reschke et al. (2019b). Each of the 99 sites covers at least 4000 years in the interval of the Holocene (8–0 kyr

ago, 88 time series in total) and/or the LGM (27–19 kyr ago, 39 time series total) at a mean sampling interval of 225 years or

lower. These records are irregularly sampled in time, and come with different sampling characteristics (Fig. 2).285

3 Results

Using the methods described above to generate synthetic data, we can evaluate the ability of each method to recover the input

scaling exponents. For each method, we calculate the bias and standard deviation over the ensembles of surrogate data, for

input H between -0.9 and 0.9 in increments of 0.1. This wide range of H values covers all values encountered later in the

multi-proxy database; the vast majority of climatic series even fall within an even more restricted range of H ∈ [−0.5,0.5].290

First, we consider the ideal case of regular sampling, then we study the effect of irregular sampling and finally, the impact of

the length of the time series.

3.1 Effect of Regular and Irregular Sampling

We evaluate the estimators for four cases pertaining to the resolution of the data and always a fixed length of 128 data points

(Fig. 3). The first case considers “annual data” which was directly simulated and not degraded afterwards; it is therefore regular.295
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Figure 2. Sampling characteristics of the 127 paleoclimate timeseries (Rehfeld et al., 2018). The 88 Holocene series (teal) and 39 Last

Glacial Maximum series (pink) are evaluated along the following characteristics: (a) the skewness ν of the distribution of time steps , (b) the

number of points, i.e. samples , and (c) the mean resolution τµ of the time steps.

It is shown for comparison with the second case where we simulate 5120-year long series and then degrade them to 40-year

resolution. This allows us to study the impact of the degrading method which is necessary for producing irregular series. The

third and fourth cases deal with series of 128 irregular timesteps drawn from a gamma distribution with skewness ν = 0.5 and

ν = 1 respectively, and a mean parameter of 40-year so that the resulting series have the same mean resolution as the second

(regular) case. To illustrate the contribution of different frequency ranges to the precision and accuracy of the estimators, the300

scaling exponents were also fit on sub-ranges of equal width in the log of the timescales which we refer to as the shorter

timescales, the intermediate timescales and the longer timescales, corresponding to, respectively, 2-9.2 τµ, 4.3-19.9 τµ and

9.2-42.7 τµ, where τµ is the mean resolution of the timeseries (Figure 4).

For the “annual data” series, the scaling exponent H can generally be recovered for all values of H ∈ [−0.9,0.9] with a

standard devation below 0.13 and an absolute bias less than 0.06 (Fig. 3, top left), except for the LSP when H >−0.1 as it305

increasingly underestimates higher values ofH . The small bias observed in the MTM and LSP estimates stems from the shorter

timescales (Fig. 4) which are sensitive to aliasing of the power below the Nyquist frequency, and therefore the measured scaling

slope of series with negative β (i.e. H <−0.5) are biased high whereas increasingly negative bias is obtained for increasingly

positive values of β (H >−0.5). It follows that the flat case of β = 0 (H =−0.5) is unbiased by aliasing since the aliased

12

https://doi.org/10.5194/npg-2021-7
Preprint. Discussion started: 5 March 2021
c© Author(s) 2021. CC BY 4.0 License.



●

−0.3 −0.2 −0.1 0 0.1 0.2 0.3
Bias

0
0.

1
0.

2
σ

(a)

●●●●●●●●●●●●●●●●●●●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

H

−0.9
−0.8
−0.7
−0.6
−0.5
−0.4
−0.3
−0.2
−0.1
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Annual

●

−0.3 −0.2 −0.1 0 0.1 0.2 0.3
Bias

0
0.

1
0.

2
σ

(b)

●●●●●●●●●●●●●●●●●● ●

40−year Regular

●

−0.3 −0.2 −0.1 0 0.1 0.2 0.3
Bias

0
0.

1
0.

2
σ

(c)

●●●●●●●●●●●●●●●●●●●

40−year Irregular (ν=0.5)

●

Method

Multitaper
Lomb−Scargle
Haar

●

−0.3 −0.2 −0.1 0 0.1 0.2 0.3
Bias

0
0.

1
0.

2
σ

(d)

●●●●●●●●●●●●●●●●●●●

40−year Irregular (ν=1.0)

Figure 3. Bias-Standard Deviation diagram for ensembles of H estimates surrogate timeseries with input values of H ∈ (−1,1) (i.e. β ∈
(−1,3)). Different types of data are evaluated: (a) regular “annual data”, i.e. it was directly simulated and not degraded after, (b) regular

‘surrogate data degraded at regular 40-year interval, and irregular surrogate data with timesteps drawn from a gamma distribution with (c)

skewness ν = 0.5 or (d) skewness ν = 1.

power is likewise flat. The HSF based estimates also have a significant bias in the other direction when the series considered310

have an input H decreasing below H =−0.5.

The second case of regular 40-year series yields similar results as the previous case, although there is no more aliasing since

we sub-sampled the 5120-year long series at 40-year intervals after an 80-year low-pass filter was applied (Fig. 3, top right).

The MTM returns a consistent estimate with a variance which remains almost constant over the range of H . The estimator has

little bias for stationary series with H < 0, but it steadily increases for higher values as the lower-frequencies bend upward315

(Fig. 4). This seems to be related to the bias low characteristic of the MTM at the longest timescales (Prieto et al., 2007) which

creates an inflection point (around ∆t≈ 3000years on Fig. 1) and the power lost to its right appears redistributed to its left.

Therefore, as H increases, the amount of power lost is more important and the inflection stronger. The LSP estimates are also

largely unbiased until about H = 0.5, and above it a strong negative bias is developed, particularly on the side of the smaller

timescales (Fig. 4, Fig. 1).320

The problem of irregularity is considered using irregular surrogate data skewness parameter ν = 0.5 and ν = 1 (Fig. 3,

bottom row). In the case of the MTM, we observe a consistent bias for allH of about 0.5 and 0.1 for the shorter and intermediate

timescales, respectively, for the weakly irregular case (ν = 0.5), and practically no bias ( 0.02) at the longer timescales. This
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Figure 4. Timescale dependence of the bias and variance for regular and irregular series. We evaluate the three methods: MTM (circles), HSF

(square), and LSP (triangles). The colors corresponds to the inputH value for each simulation, ranging from -0.9 to 0.9. in increments of 0.1.

The rows correspond to different types of surrogate series: (a-c) “annual data”, (d-f) regular data , (g-i) mildy irregular data (ν = 0.5), (j-l)

strongly irregular data (ν = 1.0); see section 2.2.1. The columns correspond to three different fitting ranges in terms of the mean resolution

τµ, (a,d,g,j) the shorter timescales: 2-9.2 τµ, (b,e,h,k) the intermediate timescales: 4.3-19.9 τµ and (c,f,i,l) the longer timescales: 9.2-42.7

τµ.
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corresponds very closely to the expected bias from the linear interpolation step, and it could potentially be accounted and

corrected for. While it is outside of the scope of this study to formally develop such method, if we apply a first-order correction325

by dividing the MTM spectra by a sinc4 with time constant corresponding to the mean sampling resolution, we can greatly

reduce the bias down to the Nyquist frequency (Fig. 1, Fig. S7).

The negative bias for the LSP evoked above for H > 0.5 amplifies with irregularity and even affects significantly a wider

range of H values, down to H =−0.5 for the most irregular case (ν = 1.). This is a consequence of higher than expected

variance over the smaller timescales in the LSP when the slope is steep, as already identified by Schulz and Mudelsee (2002)330

using red noise. The HSF estimates on the other hand remain mostly insensitive to the irregular sampling for all H >−0.5, but

the positive bias we already identified in the regular case whenH <−0.5 amplifies for more negative values ofH . Similarly, all

methods yield increasing positive bias for such anti-persistent timeseries (i.e. with H <−0.5) when the sampling is irregular.

This conjuncture seems to indicate that the anti-correlation characteristic of H <−0.5 processes is lost to some extent when

degraded in an irregular manner to produce the surrogate data, as they all show a similar increase of their bias (by about 0.15335

for the H =−0.9 case) with respect to their bias for the H =−0.5 case.

3.2 Effect of Time series length

While the irregularity had a larger impact on the bias of the estimator, the length of the time series mostly influences the

variance of the estimator (Fig. S8).

In the case of the MTM estimates, all values of H result in a similar standard deviation for a given resolution. When the340

resolution is doubled, the standard deviation increases by a factor close to the expected
√

2 (by∼1.4-1.7), going from σ ≈ 0.27

at the 160-year resolution to σ ≈ 0.07 at the 20-year resolution (Fig. S8). The bias also improves when the resolution increases,

particularly for the higher values ofH such as forH = 0.9 which goes fromB ≈ 0.27 at the 160-year resolution toB ≈ 0.10 at

the 20-year resolution, while for negative H values it goes from B ≈ 0.05−0.07 to |B|< 0.01 for the same resolution change.

In the case of the LSP, up to H ≈ 0.1, the standard deviation of the estimates also decrease by a factor close to
√

2 (by345

∼1.4-1.8, Fig. S8) with each doubling of resolution, going from σ ≈ 0.35 at the 160-year resolution to σ ≈ 0.08 at the 20-year

resolution, and the bias improves only slightly since it was already small (|B|< 0.04). For the higher H values, the standard

deviation improves less (by ∼1.2-1.4 at H = 0.9, Fig. S8), going from σ ≈ 0.43 at the 160-year resolution to only σ ≈ 0.19 at

the 20-year resolution. At the same time, the bias change becomes more positive, thus compensating slightly better the overall

strong negative bias characteristic of the LSP estimates for very high H values.350

In the case of the HSF, when increasing the resolution, the standard deviation of the estimates improves more for the lower

H values than for the higher values, improving by a factor of ∼1.4-1.8 for H =−0.9 to ∼1.2-1.4 for H = 0.9 (Fig. S8).

Overall, the standard deviation improves from σ ≈ 0.20− 0.25 at the 160-year resolution to σ ≈ 0.06− 0.09 at the 20-year

resolution. The slight negative bias found for the H >−0.5 estimates (|B|< 0.04) practically vanishes, but not the positive

one for H <−0.5 which only decreases slightly.355
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Figure 5. Resolution dependence of the estimators. The performance of the estimators is shown for regular surrogate data of different

resolutions: (a) 160 years , (b) 80 years, (c) 40 years and (d) 20 years. For each case, the series spanned 5120 years, and therefore each case

contains 32, 64, 128 and 256 data points, respectively.

3.3 Application to database

In order to see how these results translate to typical proxy records, we perform the analysis with surrogate data with sampling

characteristic and scaling behaviour directly extracted from the database of Holocene and LGM records. We make the assump-

tion that the series are approximately power-law scaling and that they can therefore be modelled by fractional noise described

by a scaling exponent H . Since the best H to describe the approximate scaling behaviour of the series is unknown, we make360

an initial approximation with each method and take the median of the three results as the reference value for the given series,

with which we generate an ensemble of surrogate with the same sampling scheme as the given series. We use the real timesteps

in order to evaluate the impact of each specific sampling scheme. Again, we consistently fitted up to one third of the length

(see section 2.1.3), but determined empirically the best minimum fitting scale τmin such that it minimizes the RMSE of the

estimator with respect to the reference H used to generate the surrogate data.365

We found the HSF to yield the smallest τmin of the three methods, with τmin below twice the mean resolution τµ for 121

out of 127 series and even below τµ for 43 out of 127. The LSP yielded similar results with 109 out of 127 series having τmin
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Figure 6. Best minimum fitting timescales. For each methods are shown the best minimum fitting timescales τmin (minimizing the RMSE in

H) as a function of the mean resolution τµ for ensembles of surrogate data generated with the same sampling scheme as the corresponding

paleoclimate timeseries from the database.

below twice τµ, and 41 out of 127 having τmin even below τµ. This contrasts with the MTM which almost never suggests best

results for τmin below twice τµ, but rather an average minimum resolution τ̄min = 3.3τµ, compared to τ̄min = 1.2τµ for the

HSF and τ̄min = 1.3τµ for the LSP. This underlines because interpolation-free methods give more reliable estimates at shorter370

timescales, they allow a better usage of the full data.

The HSF yields the best results of all three methods both in terms of variance of the estimates, and in terms of bias, with a

mild tendency towards positive biases. The MTM also tends to show positive biases, albeit higher, while the LSP tends to show

negative biases. Both the MTM and the LSP generally show higher variance of their estimators than the HSF (Fig. 7), although

for different reasons. The MTM has higher variance because the higher τmin does not allow to use the smaller timescales in the375

estimation procedure, while the LSP shows higher variance because of the timeseries with high input H for which it performs

poorly, especially when the data are irregular (Fig. 3).
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Figure 7. Bias-standard deviation diagram for the surrogate timeseries generated using timesteps from the paleoclimate database. The input

H used to generate the timeseries is indicated by the colour inside the markers. The shaded polygons contain all the points for a given method

(see legend for colours).

On average, the HSF method gave the lowest RMSE = 0.11±0.04 compared to RMSE = 0.30±0.15 and RMSE = 0.19±
0.15 for the MTM and the LSP, respectively. The poor performance of the LSP compared to the HSP stems from the higher H

since it performs as well as the Haar when H < 0, with RMSE = 0.12± 0.07 (Fig. 8).380

4 Discussion

Our comparative study indicates that for irregular timeseries the methods with interpolation, i.e.the CPG and the MTM, are

less efficient to evaluate variability across timescales than the methods without interpolation, i.e. the LSP and the HSF. In

the case of regular timeseries however, all methods were found to perform similarly (Fig. 3b) for a wide range of input H ,

and only showed bias on the fringes of the H range considered. In addition, we found that the choice of method should also385

be informed by the characteristics of the underlying process measured since there was an observed dependence between the

performance metrics and the scaling exponentH which generated the surrogate data. As such, the LSP may be only appropriate

for irregular series suspected of havingH near or belowH =−0.5, while the HSF shows better reliability even whenH is near

or above H = 0. It might not be so surprising that the LSP performed poorly for higher H values since it has been developed

to approximate the CPG for stationary noise processes (Scargle, 1982) and processes with H > 0 are non-stationary, i.e. their390

mean is not stable and changes with time.
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Figure 8. RMSE of the H estimates as a function of the input H for the surrogate timeseries based on the proxy database. The RMSE are

given for the three estimation methods as a function of the H used to generate the surrogates. Also shown is a Gaussian smoothing of the

points for each method (thick line) and the one standard deviation confidence interval (shaded).

In addition to the irregularity, we also compared how the resolution of the timeseries affects the estimators of H . While

making the series more irregular mostly affected the accuracy of the estimates, i.e. their bias, without affecting their precision,

i.e. their standard deviation, increasing the resolution mostly improved the precision and the accuracy only to a lesser extent.

Increasing the resolution naturally improves the estimates as it provides more information and also because it decreases the395

relative weight of the most uncertain timescales: the smaller timescales, near the sampling resolution, and the longer timescales,

near the length of the series.

Our conclusions however rely on the real data having similar properties to the surrogate data used to validate the methods,

and the conclusions may be different if the real data have properties different than the assumed power-law scaling. It is difficult

to say for example which method would perform best if the data analyzed would contain two different scaling regimes, one400

with low H and the other with high H (Lovejoy and Schertzer, 2013). Furthermore, in order to degrade the simulated annual

timeseries into irregular paleoclimate-like data we had to use simplified numerical methods to mimic the physical processes

and manipulations leading to the recording and retrieval of paleoclimate archives. For our purpose, we chose to low-pass filter

the data and sub-sample since this is very common in sedimentary data and ice cores because of, respectively, bio-turbation

and diffusion (Dolman and Laepple, 2018; Dolman et al., 2020; Kunz et al., 2020). However, reality is more complex and405
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other processes could significantly alter the recorded signal and bias the variability estimates in ways not accounted for by our

surrogate model. For specific case studies, it is advisable to develop forward models (Stevenson et al., 2013; Dee et al., 2017;

Dolman and Laepple, 2018; Casado et al., 2020) of the studied paleoclimate archives in order to understand potential biases

generated by the recording and specific sampling.

In summary, it is difficult to ascertain which method is the “best” since the answer depends on the irregularity, the resolution410

and, most importantly, the underlying H values. In this respect, the HSF is possibly the safer method for paleoclimate applica-

tions since it only performs poorly for series with H <−0.5, an almost unseen behaviour in climatic timeseries at timescales

longer than decadal. Although the LSP gives equally good result for H / 0 and even better near H =−0.5, i.e. white noise, its

increasing bias and standard deviation for higher H values makes it an uncertain choice for timescales longer than centennial

since climate timeseries at those timescales often show H ≈ 0 and greater. The MTM produces good estimates for relatively415

regular series, but struggles with highly irregular timeseries since it must rely on interpolation. While this produces a large bias

on the shorter timescales which we have thus discarded, the bias is rather consistent and methods could be developed to correct

for it (e.g. Fig. S7). On the other hand, the longer timescales of the MTM are relatively well estimated and it is appropriate to

estimate the absolute variance over a timescale band well above the mean resolution (Rehfeld et al., 2018; Hébert et al., 2021).

Further, the effect of proxy biases are well studied for the power spectrum (Kunz et al., 2020; Dolman et al., 2020) mainly due420

to the known properties of the Fourier transform. Our study is not comprehensive and other methods such as the bias corrected

version of Lomb-Scargle (Schulz and Mudelsee, 2002, REDFIT) and the z-transform wavelet (Zhu et al., 2019) exist. More

precise estimates of the scaling exponent are obtained by parametric methods based on maximum likelihood, but they require

strong assumptions about the underlying process (Del Rio Amador and Lovejoy, 2019). We aimed to cover the most commonly

used methods that also allow for a simple interpretation of variability across timescales, either as they represent the well studied425

power spectrum or the Haar fluctuations that directly provide changes in amplitude.

5 Conclusions

Characterizing the variability across timescales is important to understand the underlying dynamics of the Earth system. It

remains challenging to do so from paleoclimate archives since they are more than often irregular and traditional methods to

produce timescale-dependent estimates of variability such as the classical periodogram and the multitaper spectrum generally430

require regular time sampling.

We have compared those traditional methods using interpolation with interpolation-free methods, namely the Lomb-Scargle

periodogram and the first-order Haar structure function. The ability of those methods to produce timescale-dependent esti-

mates of variability when applied to irregular data was evaluated in a comparative framework. The metric we chose to compare

them is the scaling exponent, i.e. the linear slope in log-transformed coordinates, since it summarizes the behaviour of the435

variability over a given timescale band. Doing so assumes power-law scaling, a behaviour which is often observed in geophys-

ical timeseries at least approximatively (Mandelbrot and Wallis, 1968; Cannon and Mandelbrot, 1984; Pelletier and Turcotte,

1999; Malamud and Turcotte, 1999; Fedi, 2016; Corral and Gonz\‘alez, 2019). To evaluate our estimators, we generated frac-

20

https://doi.org/10.5194/npg-2021-7
Preprint. Discussion started: 5 March 2021
c© Author(s) 2021. CC BY 4.0 License.



tional noise as surrogate annual timeseries characterized by a given scaling exponent H , also known as fractional Gaussian

noise when they are stationary (H < 0) and fractional Brownian motion when they are non-stationary (H > 0). The annual440

timeseries were then degraded to resolutions characteristics of paleoclimate archives for the recent Holocene.

We found that for scaling estimates in irregular timeseries, the interpolation-free methods are to be preferred over the

methods requiring interpolation as they allow for the utilization of the information from shorter timescales without introducing

additional bias. In addition, our results suggest that the Haar structure function is the safer choice of interpolation-free method

since the Lomb-Scargle periodogram is unreliable when the underlying process generating the timeseries is not stationary.445

This conclusion was reinforced by the application to the proxy database which indeed showed the Haar structure function to

give more reliable estimates over a wide range of H . Given that we cannot know a priori what kind of scaling behaviour is

contained in a paleoclimate timeseries, and that it is also possible that this changes as a function of timescale, it is a desirable

characteristic for the method to handle both stationary and non-stationary cases alike.
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